
CUSTOMIZING GOOGLE

The Evolution

When the Google box launched, we customized the XSLT to put
our logo, header, footer and simple CSS on it, but left most of the
default settings.

We meant to get around to revising it.

CUSTOMIZING GOOGLE

The Problem

We had old content from news releases and the magazine
cluttering up our search results. Someone searching for “zebra
mussels” would wade through a page of obsolete information
before finding current information

• News from 1995-98

• Magazine articles from 1995

• We link extensively to our magazine archives as support
material.

• Our staff uses the web to search for old articles by author,
title or subject matter.

CUSTOMIZING GOOGLE

The Solution

Create separate collections for news and magazine articles.

This pulls out the old magazine and news articles from the
search results.

This helps the search engine pull more appropriate pages from
our core library of documents.

CUSTOMIZING GOOGLE

The Implementation

Now, users that used to find magazine articles in the search results
can’t find them.

We needed to be able to bounce between the collections on the
search page; preferably with a switch to let users select which
collection they wanted.

CUSTOMIZING GOOGLE

Steps to a Solution

1. Clean the HTML output from the XSLT

• This took the most time. Had to understand how Google’s
XSLT works and where elements were referenced. Ctrl F
is your friend.

2. Develop collection switch

• Insert new XSLT elements/logic to support switching of
collections

• Use javascript to change values on the fly (basic DOM
programming)

CUSTOMIZING GOOGLE

Cleaning Up the Output

View the source code of existing HTML output from XSLT

•Identify elements to get rid of (table layout,)

•Identify elements to change (, <i>, headings, separators)

Locate those elements in the XSLT file and change accordingly

•Make sure logic isn’t changed or that you know what has
changed

•Make the output as close to XHTML Strict as possible

Add any new features

•Import new CSS

•Header/footer variables (used during development)

•Follow a template (header, footer, content, main-content)

•Fieldsets and labels to forms

•Javascript functions

Currently can’t make XHTML Strict compliant due to namespace

(There is a beta Google XSLT that supposedly will generate;
however, still couldn’t get it to validate)

Cleaning Up the Output - cont

CUSTOMIZING GOOGLE

1. Create a variable to determine when to search other
collections

2. The site parameter is used to select a collection

• Add XSLT logic to display the field when necessary

• Add XSLT logic to show the value when page loads

3. Add a new javascript function to change values on the fly

• Cycle through all the appropriate forms on the page
(top/bottom)

• Change the proxystylesheet and client parameters to the
selected value

Switching Collections

CUSTOMIZING GOOGLE

CUSTOMIZING GOOGLE

Breakdown of the Code - XSLT

Changes made in the XSLT

Created a new variable search_other_parts, that will trigger when
to display the options of changing collections.

<xsl:if test="$search_other_parts!='1'">
 <xsl:if test="$search_collections_xslt = '' and PARAM[@name='site']">
 <input type="hidden" name="site” value="{PARAM[@name='site']/@value}"/>
 </xsl:if>
 </xsl:if>

Added logic to form_params template to generate the site field if
the search_other_parts is not activated.

<xsl:variable name="search_other_parts">1</xsl:variable>

CUSTOMIZING GOOGLE

Breakdown of the Code - XSLT

Code was added to the search_box template to manually create the
site field in the search form if needed.

First, check if the search_other_parts variable is turned on and
that we are not searching through results.

Next, check the current value of site so it can be displayed when
the page loads.

CUSTOMIZING GOOGLE

<xsl:if test="($search_other_parts != '0') and ($type != 'swr')">
 <p>
 <xsl:choose>
 <xsl:when test="PARAM[(@name='site') and (@value='mdc_conmag')]">
 <label><input type="radio" name="site" value="mdc_conmag"

onClick="javascript:changeStyle('mdc_conmag')" checked="checked" />Search
Conservationist</label>

 </xsl:when>
 <xsl:otherwise>
 <label><input type="radio" name="site" value="mdc_conmag"

onClick="javascript:changeStyle('mdc_conmag')" />Search Conservationist</label>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="PARAM[(@name='site') and (@value='mdc')]">
 <label><input type="radio" name="site" value="mdc" onClick="javascript:changeStyle('mdc')"

checked="checked" />Search MDC online</label>
 </xsl:when>
 <xsl:otherwise>
 <label><input type="radio" name="site" value="mdc" onClick="javascript:changeStyle('mdc')"

/>Search MDC online</label>
 </xsl:otherwise>
 </xsl:choose>
 </p>
 </xsl:if>

CUSTOMIZING GOOGLE

Breakdown of the Code - Javascript

Code added to the search_results template

The function is called and passed a variable when the radio button
is selected.

The function cycles through all the forms found on the page and
will only change forms containing both proxystylesheet and client

function changeStyle(theValue){
 for (var i=0; i < document.forms.length; i++) {
 if (document.forms[i].elements['proxystylesheet'] && document.forms[i].elements['client'])
 {
 document.forms[i].elements['proxystylesheet'].value = theValue;
 document.forms[i].elements['client'].value=theValue;
 }
}

CUSTOMIZING GOOGLE

Final Thoughts

There were 3 XSLTs, one for each collection. The changes
outlined here were made to all three of these.

This example worked with relative ease due to the naming
convention. Our client, proxystylesheet, site all have the same
names/values: mdc, mdc_news, mdc_conmag. Same names
allowed for easy switching of values.

If Javascript is disabled the collections will still be searched;
however, the page design will not change.

